区块链技术博客
www.b2bchain.cn

检测立方体和圆锥体是否相交? – python程序员分享

本文介绍了检测立方体和圆锥体是否相交? – python程序员分享,有助于帮助完成毕业设计以及求职,是一篇很好的资料。

对技术面试,学习经验等有一些体会,在此分享。

考虑3D中的两个几何对象:

  • 与轴对齐并由其中心位置及其范围(边长)定义的立方体
  • 一个圆锥体,其与轴不对齐,并且由其顶点的位置,其底部的中心的位置以及顶点处的半角定义
  • 这是在C++中定义这些对象的小代码:

    // Preprocessor #include <iostream> #include <cmath> #include <array>  // 3D cube from the position of its center and the side extent class cube {      public:         cube(const std::array<double, 3>& pos, const double ext)         : _position(pos), _extent(ext)          {;}         double center(const unsigned int idim)              {return _position[idim];}         double min(const unsigned int idim)             {return _position[idim]-_extent/2;}         double max(const unsigned int idim)             {return _position[idim]+_extent/2;}         double extent()             {return _extent;}         double volume()             {return std::pow(_extent, 3);}     protected:         std::array<double, 3> _position;         double _extent; };  // 3d cone from the position of its vertex, the base center, and the angle class cone {     public:         cone(const std::array<double, 3>& vert,               const std::array<double, 3>& bas,               const double ang)         : _vertex(vert), _base(bas), _angle(ang)         {;}         double vertex(const unsigned int idim)             {return _vertex[idim];}         double base(const unsigned int idim)             {return _base[idim];}         double angle()             {return _angle;}         double height()             {return std::sqrt(std::pow(_vertex[0]-_base[0], 2)+std::pow(             _vertex[1]-_base[1], 2)+std::pow(_vertex[2]-_base[2], 2));}         double radius()             {return std::tan(_angle)*height();}         double circle()             {return 4*std::atan(1)*std::pow(radius(), 2);}         double volume()             {return circle()*height()/3;}     protected:         std::array<double, 3> _vertex;         std::array<double, 3> _base;         double _angle; }; 

    我想编写一个函数来检测立方体和圆锥体的交点是否为空:

    // Detect whether the intersection between a 3d cube and a 3d cone is not null bool intersection(const cube& x, const cone& y) {     // Function that returns false if the intersection of x and y is empty     // and true otherwise } 

    这是问题的图解(图解是2D,但我的问题是3D):

    如何有效地做到这一点(我正在寻找一种算法,因此答案可以是C,C++或Python)?

    注意:这里的交集定义为:它存在于立方体和圆锥体中的非零3D体积(如果立方体在圆锥体内部,或者如果圆锥体在立方体内部,则它们相交)。

    参考方案

    对于代码

    这个答案将比您的问题更笼统(例如,我考虑使用盒子而不是立方体)。适应您的情况应该非常简单。

    一些定义

    /*     Here is the cone in cone space:              +        ^            /|       |           /*|       | H          /  |       |         /           |        +---------+   v      * = alpha (angle from edge to axis) */ struct Cone // In cone space (important) {     double H;     double alpha; };  /*     A 3d plane       v       ^----------+       |          |       |          |       +----------> u       P */ struct Plane {     double u;     double v;     Vector3D P; };  // Now, a box. // It is assumed that the values are coherent (that's only for this answer). // On each plane, the coordinates are between 0 and 1 to be inside the face. struct Box {     Plane faces[6]; }; 

    线-圆锥相交

    现在,让我们计算线段和圆锥之间的交点。请注意,我将在圆锥空间中进行计算。另请注意,我将Z轴设为垂直轴。将其更改为Y,留给读者练习。假定该线位于圆锥空间中。段方向未标准化;相反,该段的长度是方向矢量的长度,从P点开始:

    /*     The segment is points M where PM = P + t * dir, and 0 <= t <= 1     For the cone, we have 0 <= Z <= cone.H */ bool intersect(Cone cone, Vector3D dir, Vector3D P) {     // Beware, indigest formulaes !     double sqTA = tan(cone.alpha) * tan(cone.alpha);     double A = dir.X * dir.X + dir.Y * dir.Y - dir.Z * dir.Z * sqTA;     double B = 2 * P.X * dir.X +2 * P.Y * dir.Y - 2 * (cone.H - P.Z) * dir.Z * sqTA;     double C = P.X * P.X + P.Y * P.Y - (cone.H - P.Z) * (cone.H - P.Z) * sqTA;      // Now, we solve the polynom At² + Bt + C = 0     double delta = B * B - 4 * A * C;     if(delta < 0)         return false; // No intersection between the cone and the line     else if(A != 0)     {         // Check the two solutions (there might be only one, but that does not change a lot of things)         double t1 = (-B + sqrt(delta)) / (2 * A);         double z1 = P.Z + t1 * dir.Z;         bool t1_intersect = (t1 >= 0 && t1 <= 1 && z1 >= 0 && z1 <= cone.H);          double t2 = (-B - sqrt(delta)) / (2 * A);         double z2 = P.Z + t2 * dir.Z;         bool t2_intersect = (t2 >= 0 && t2 <= 1 && z2 >= 0 && z2 <= cone.H);          return t1_intersect || t2_intersect;     }     else if(B != 0)     {         double t = -C / B;         double z = P.Z + t * dir.Z;         return t >= 0 && t <= 1 && z >= 0 && z <= cone.H;     }     else return C == 0; } 

    矩形-圆锥相交

    现在,我们可以检查平面图的矩形部分是否与圆锥相交(这将用于检查立方体的面是否与圆锥相交)。仍处于圆锥空间中。该计划以对我们有帮助的方式通过:2个向量和一个点。不对向量进行归一化,以简化计算。

    /*     A point M in the plan 'rect' is defined by:         M = rect.P + a * rect.u + b * rect.v, where (a, b) are in [0;1]² */ bool intersect(Cone cone, Plane rect) {     bool intersection = intersect(cone, rect.u, rect.P)                      || intersect(cone, rect.u, rect.P + rect.v)                      || intersect(cone, rect.v, rect.P)                      || intersect(cone, rect.v, rect.P + rect.u);      if(!intersection)     {         // It is possible that either the part of the plan lie         // entirely in the cone, or the inverse. We need to check.         Vector3D center = P + (u + v) / 2;          // Is the face inside the cone (<=> center is inside the cone) ?         if(center.Z >= 0 && center.Z <= cone.H)         {             double r = (H - center.Z) * tan(cone.alpha);             if(center.X * center.X + center.Y * center.Y <= r)                 intersection = true;         }          // Is the cone inside the face (this one is more tricky) ?         // It can be resolved by finding whether the axis of the cone crosses the face.         // First, find the plane coefficient (descartes equation)         Vector3D n = rect.u.crossProduct(rect.v);         double d = -(rect.P.X * n.X + rect.P.Y * n.Y + rect.P.Z * n.Z);          // Now, being in the face (ie, coordinates in (u, v) are between 0 and 1)         // can be verified through scalar product         if(n.Z != 0)         {             Vector3D M(0, 0, -d/n.Z);             Vector3D MP = M - rect.P;             if(MP.scalar(rect.u) >= 0                || MP.scalar(rect.u) <= 1                || MP.scalar(rect.v) >= 0                || MP.scalar(rect.v) <= 1)                 intersection = true;         }     }     return intersection; } 

    箱形-圆锥形相交

    现在,最后一部分:整个立方体:

    bool intersect(Cone cone, Box box) {     return intersect(cone, box.faces[0])         || intersect(cone, box.faces[1])         || intersect(cone, box.faces[2])         || intersect(cone, box.faces[3])         || intersect(cone, box.faces[4])         || intersect(cone, box.faces[5]); } 

    对于数学

    仍然在圆锥空间中,圆锥方程为:

    // 0 is the base, the vertex is at z = H x² + y² = (H - z)² * tan²(alpha) 0 <= z <= H 

    现在,3D中线的参数方程为:

    x = u + at y = v + bt z = w + ct 

    方向向量为(a,b,c),点(u,v,w)位于线上。

    现在,让我们将这些方程放在一起:

    (u + at)² + (v + bt)² = (H - w - ct)² * tan²(alpha) 

    然后,在开发并重新分解了该方程式之后,我们得到以下结果:

    At² + Bt + C = 0 

    其中A,B和C在第一个交集函数中显示。只需解决此问题,然后检查z和t上的边界条件。

    我正在使用python pandas处理一些数据。我已使用以下代码将数据导出到excel文件。writer = pd.ExcelWriter('Data.xlsx'); wrong_data.to_excel(writer,"Names which are wrong", index = False); writer.…

    我有一个Python脚本在某些深度学习模型上运行推理。有什么办法可以找出GPU资源的利用率水平?例如,使用着色器,float16乘法器等。我似乎在网上找不到太多有关这些GPU资源的文档。谢谢! 参考方案 您可以尝试在像Renderdoc这样的GPU分析器中运行pyxthon应用程序。它将分析您的跑步情况。您将能够获得有关已使用资源,已用缓冲区,不同渲染状态上…

    基本上,这是我们合作者的python代码,用于生成网格,该网格是在Linux环境下开发的。我使用Cygwin在Windows上运行此代码。麻烦部分如下。 BiV_temp.geo也是一个python脚本。因此,命令是用预定义的数字和文件名替换脚本BiV_temp.geo中的字符串。os.system('cp BiV_fiber.geo BiV_te…

    也许很难描述我的问题。我正在寻找Python中的算法,以在带有某些文本的白色图像上创建皱纹纸效果。我的第一个尝试是在带有文字的图像上添加一些真实的皱纹纸图像(具有透明度)。看起来不错,但副作用是文本没有真正起皱。所以我正在寻找更好的解决方案,有什么想法吗?谢谢 参考方案 除了使用透明性之外,假设您有两张相同尺寸的图像,一张在皱纹纸上明亮,一张在白色背景上有深…

    在Python中,我正在使用uuid4()方法创建唯一的字符集。但是我找不到将其限制为10或8个字符的方法。有什么办法吗?uuid4()ffc69c1b-9d87-4c19-8dac-c09ca857e3fc谢谢。 参考方案 尝试:x = uuid4() str(x)[:8] 输出:"ffc69c1b" Is there a way to…

    赞(0) 打赏
    部分文章转自网络,侵权联系删除b2bchain区块链学习技术社区 » 检测立方体和圆锥体是否相交? – python程序员分享
    分享到: 更多 (0)

    评论 抢沙发

    • 昵称 (必填)
    • 邮箱 (必填)
    • 网址

    b2b链

    联系我们联系我们