区块链技术博客
www.b2bchain.cn

ETL过程和ETL工具篇求职学习资料

D0b2wT.gif

本文介绍了ETL过程和ETL工具篇求职学习资料,有助于帮助完成毕业设计以及求职,是一篇很好的资料。

对技术面试,学习经验等有一些体会,在此分享。

一、什么是ETL?

ETL,是英文Extract-Transform-Load的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程。ETL一词较常用在数据仓库,但其对象并不限于数据仓库。

构建数据仓库的核心是建模,在数据仓库的构建中,ETL贯穿于项目始终,它是整个数据仓库的生命线。从数据源中抽取数据,然后对这些数据进行转化,最终加载到目标数据库或者数据仓库中去,这也就是我们通常所说的 ETL 过程(Extract,Transform,Load)。

ETL是将业务系统的数据经过抽取、清洗转换之后加载到数据仓库的过程,目的是将企业中的分散、零乱、标准不统一的数据整合到一起,为企业的决策提供分析依据, ETL是BI(商业智能)项目重要的一个环节。

通常数据抽取工作分抽取、清洗、转换、装载几个步骤:

ETL过程和ETL工具篇

抽取

针对各个业务系统及不同服务器的分散数据,充分理解数据定义后,规划需要的数据源及数据定义,制定可操作的数据源,制定增量抽取和缓慢渐变的规则。

清洗

针对系统的各个环节可能出现的数据二义性、重复、不完整、违反业务规则等数据质量问题,允许通过数据抽取设定的数据质量规则,将有问题的记录先剔除出来,根据实际情况调整相应的清洗操作。

转换

针对数据仓库建立的模型,通过一系列的转换来实现将数据从业务模型到分析模型,通过ETL工具可视化拖拽操作可以直接使用标准的内置代码片段功能、自定义脚本、函数、存储过程以及其他的扩展方式,实现了各种复杂的转换,并且支持自动分析日志,清楚的监控数据转换的状态并优化分析模型。

装载

将经过转换的数据装载到数据仓库里面,可以通过直连数据库的方式来进行数据装载,可以充分体现高效性。在应用的时候可以随时调整数据抽取工作的运行方式,可以灵活的集成到其他管理系统中。

ETL与ELT

ETL所描述的过程,一般常见的作法包含ETL或是ELT(Extract-Load-Transform),并且混合使用。通常愈大量的数据、复杂的转换逻辑、目的端为较强运算能力的数据库,愈偏向使用ELT,以便运用目的端数据库的平行处理能力。

ETL工具

ETL(orELT)的流程可以用任何的编程语言去开发完成,由于ETL是极为复杂的过程,而手写程序不易管理,有愈来愈多的企业采用工具协助ETL的开发,并运用其内置的metadata功能来存储来源与目的的对应(mapping)以及转换规则。

工具可以提供较强大的连接功能(connectivity)来连接来源端及目的端,开发人员不用去熟悉各种相异的平台及数据的结构,亦能进行开发。

ETL工具或类ETL的数据集成同步有非常之多,主流的etl工具有Sqoop、DataX、Canal,maxwell、flume、Logstash、kettle、DataStage、Informatica、Talend,DataPipeline,Goldengate,StreamSets等,下面只是简单介绍几个比较常用的工具。

Sqoop

SQL-to-Hadoop 即 “SQL到Hadoop和Hadoop到SQL”。

是Apache开源的一款在Hadoop和关系数据库服务器之间传输数据的工具。主要用于在Hadoop与关系型数据库之间进行数据转移,可以将一个关系型数据库(MySQL ,Oracle等)中的数据导入到Hadoop的HDFS中,也可以将HDFS的数据导出到关系型数据库中。

sqoop命令的本质是转化为MapReduce程序。sqoop分为导入(import)和导出(export),策略分为table和query,模式分为增量和全量。

DataPipeline

Data Pipeline是一家为企业用户提供数据基础架构服务的科技公司,DataPipeline数据质量平台整合了数据质量分析、质量校验、质量监控等多方面特性, 以保证数据质量的完整性、一致性、准确性及唯一性,彻底解决数据孤岛和数据定义进化的问题。

一、什么是ETL?

ETL,是英文Extract-Transform-Load的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程。ETL一词较常用在数据仓库,但其对象并不限于数据仓库。

构建数据仓库的核心是建模,在数据仓库的构建中,ETL贯穿于项目始终,它是整个数据仓库的生命线。从数据源中抽取数据,然后对这些数据进行转化,最终加载到目标数据库或者数据仓库中去,这也就是我们通常所说的 ETL 过程(Extract,Transform,Load)。

ETL是将业务系统的数据经过抽取、清洗转换之后加载到数据仓库的过程,目的是将企业中的分散、零乱、标准不统一的数据整合到一起,为企业的决策提供分析依据, ETL是BI(商业智能)项目重要的一个环节。

通常数据抽取工作分抽取、清洗、转换、装载几个步骤:

ETL过程和ETL工具篇

抽取

针对各个业务系统及不同服务器的分散数据,充分理解数据定义后,规划需要的数据源及数据定义,制定可操作的数据源,制定增量抽取和缓慢渐变的规则。

清洗

针对系统的各个环节可能出现的数据二义性、重复、不完整、违反业务规则等数据质量问题,允许通过数据抽取设定的数据质量规则,将有问题的记录先剔除出来,根据实际情况调整相应的清洗操作。

转换

针对数据仓库建立的模型,通过一系列的转换来实现将数据从业务模型到分析模型,通过ETL工具可视化拖拽操作可以直接使用标准的内置代码片段功能、自定义脚本、函数、存储过程以及其他的扩展方式,实现了各种复杂的转换,并且支持自动分析日志,清楚的监控数据转换的状态并优化分析模型。

装载

将经过转换的数据装载到数据仓库里面,可以通过直连数据库的方式来进行数据装载,可以充分体现高效性。在应用的时候可以随时调整数据抽取工作的运行方式,可以灵活的集成到其他管理系统中。

ETL与ELT

ETL所描述的过程,一般常见的作法包含ETL或是ELT(Extract-Load-Transform),并且混合使用。通常愈大量的数据、复杂的转换逻辑、目的端为较强运算能力的数据库,愈偏向使用ELT,以便运用目的端数据库的平行处理能力。

ETL工具

ETL(orELT)的流程可以用任何的编程语言去开发完成,由于ETL是极为复杂的过程,而手写程序不易管理,有愈来愈多的企业采用工具协助ETL的开发,并运用其内置的metadata功能来存储来源与目的的对应(mapping)以及转换规则。

工具可以提供较强大的连接功能(connectivity)来连接来源端及目的端,开发人员不用去熟悉各种相异的平台及数据的结构,亦能进行开发。

ETL工具或类ETL的数据集成同步有非常之多,主流的etl工具有Sqoop、DataX、Canal,maxwell、flume、Logstash、kettle、DataStage、Informatica、Talend,DataPipeline,Goldengate,StreamSets等,下面只是简单介绍几个比较常用的工具。

Sqoop

SQL-to-Hadoop 即 “SQL到Hadoop和Hadoop到SQL”。

是Apache开源的一款在Hadoop和关系数据库服务器之间传输数据的工具。主要用于在Hadoop与关系型数据库之间进行数据转移,可以将一个关系型数据库(MySQL ,Oracle等)中的数据导入到Hadoop的HDFS中,也可以将HDFS的数据导出到关系型数据库中。

sqoop命令的本质是转化为MapReduce程序。sqoop分为导入(import)和导出(export),策略分为table和query,模式分为增量和全量。

DataPipeline

Data Pipeline是一家为企业用户提供数据基础架构服务的科技公司,DataPipeline数据质量平台整合了数据质量分析、质量校验、质量监控等多方面特性, 以保证数据质量的完整性、一致性、准确性及唯一性,彻底解决数据孤岛和数据定义进化的问题。

一、什么是ETL?

ETL,是英文Extract-Transform-Load的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程。ETL一词较常用在数据仓库,但其对象并不限于数据仓库。

构建数据仓库的核心是建模,在数据仓库的构建中,ETL贯穿于项目始终,它是整个数据仓库的生命线。从数据源中抽取数据,然后对这些数据进行转化,最终加载到目标数据库或者数据仓库中去,这也就是我们通常所说的 ETL 过程(Extract,Transform,Load)。

ETL是将业务系统的数据经过抽取、清洗转换之后加载到数据仓库的过程,目的是将企业中的分散、零乱、标准不统一的数据整合到一起,为企业的决策提供分析依据, ETL是BI(商业智能)项目重要的一个环节。

通常数据抽取工作分抽取、清洗、转换、装载几个步骤:

ETL过程和ETL工具篇

抽取

针对各个业务系统及不同服务器的分散数据,充分理解数据定义后,规划需要的数据源及数据定义,制定可操作的数据源,制定增量抽取和缓慢渐变的规则。

清洗

针对系统的各个环节可能出现的数据二义性、重复、不完整、违反业务规则等数据质量问题,允许通过数据抽取设定的数据质量规则,将有问题的记录先剔除出来,根据实际情况调整相应的清洗操作。

转换

针对数据仓库建立的模型,通过一系列的转换来实现将数据从业务模型到分析模型,通过ETL工具可视化拖拽操作可以直接使用标准的内置代码片段功能、自定义脚本、函数、存储过程以及其他的扩展方式,实现了各种复杂的转换,并且支持自动分析日志,清楚的监控数据转换的状态并优化分析模型。

装载

将经过转换的数据装载到数据仓库里面,可以通过直连数据库的方式来进行数据装载,可以充分体现高效性。在应用的时候可以随时调整数据抽取工作的运行方式,可以灵活的集成到其他管理系统中。

ETL与ELT

ETL所描述的过程,一般常见的作法包含ETL或是ELT(Extract-Load-Transform),并且混合使用。通常愈大量的数据、复杂的转换逻辑、目的端为较强运算能力的数据库,愈偏向使用ELT,以便运用目的端数据库的平行处理能力。

ETL工具

ETL(orELT)的流程可以用任何的编程语言去开发完成,由于ETL是极为复杂的过程,而手写程序不易管理,有愈来愈多的企业采用工具协助ETL的开发,并运用其内置的metadata功能来存储来源与目的的对应(mapping)以及转换规则。

工具可以提供较强大的连接功能(connectivity)来连接来源端及目的端,开发人员不用去熟悉各种相异的平台及数据的结构,亦能进行开发。

ETL工具或类ETL的数据集成同步有非常之多,主流的etl工具有Sqoop、DataX、Canal,maxwell、flume、Logstash、kettle、DataStage、Informatica、Talend,DataPipeline,Goldengate,StreamSets等,下面只是简单介绍几个比较常用的工具。

Sqoop

SQL-to-Hadoop 即 “SQL到Hadoop和Hadoop到SQL”。

是Apache开源的一款在Hadoop和关系数据库服务器之间传输数据的工具。主要用于在Hadoop与关系型数据库之间进行数据转移,可以将一个关系型数据库(MySQL ,Oracle等)中的数据导入到Hadoop的HDFS中,也可以将HDFS的数据导出到关系型数据库中。

sqoop命令的本质是转化为MapReduce程序。sqoop分为导入(import)和导出(export),策略分为table和query,模式分为增量和全量。

DataPipeline

Data Pipeline是一家为企业用户提供数据基础架构服务的科技公司,DataPipeline数据质量平台整合了数据质量分析、质量校验、质量监控等多方面特性, 以保证数据质量的完整性、一致性、准确性及唯一性,彻底解决数据孤岛和数据定义进化的问题。

部分转自互联网,侵权删除联系

赞(0) 打赏
部分文章转自网络,侵权联系删除b2bchain区块链学习技术社区 » ETL过程和ETL工具篇求职学习资料
分享到: 更多 (0)
D0b2wT.gif

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址

b2b链

联系我们联系我们